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Abstract
We show that a set of current-carrying wires can exhibit an effective magnetic
permeability at very low frequencies of a few hertz. The resonant permeability,
which is negative above the resonance frequency, arises from the oscillations of
the wires driven by the applied magnetic field. We show that a large, frequency-
specific and tunable effective permeability can be realized for a wide range of
strengths of the applied field.

1. Introduction

In this paper we give a recipe for a micro-structured material that behaves like a plasma of
magnetic poles with an extremely low magnetic plasma frequency of a few hertz. The structure
comprises two lattices of conducting wires carrying oppositely directed currents.

The properties of a free assembly of electrical charges are well known. The long-range
Coulomb interaction and the finite mass of the charges combine to give an effective electrical
permittivity of

ε(ω) = 1 − ω2
p

ω(ω + iγ )
(1)

where

ω2
p = ne2

ε0m
(2)

and γ represents dissipation produced by electrical resistance. In good conductors, γ is small
compared to ωp.

This form of ε, and particularly the negative value of ε below the plasma frequency, give a
plasma some unique properties. A magnetic plasma we define as having an analogous magnetic
permeability, µ, which takes negative values in a range of frequencies and vanishes at some
magnetic plasma frequency:

ω = ωmp . (3)
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Negative values of ε and/or µ impart some remarkable properties to a material. In particular,
interfaces between two materials, one with ε < 0 and the other with ε > 0, will in general
support surface modes. The structure of these modes is unrestricted by the free space
wavelength of radiation and can sometimes result in extremely localized concentrations of
energy within a few nanometres or less. These localized resonances are responsible for the
strong absorbing powers of colloidal silver, and for the surface-enhanced Raman resonance
effects also observed in these systems. Analogous effects can be expected when µ < 0, though
so far they remain theoretical predictions.

At lower frequencies the interest of ‘negative epsilon’ structures has recently been
appreciated. Perhaps the most striking ‘negative epsilon’ property is to be found in a
superconductor where in equation (1) γ = 0 and the permittivity is negative and diverges
at zero frequency. This divergence is responsible for the expulsion of all electromagnetic
fields from the superconductor as we can see by calculating the complex wavevector in this
limit:

k = ω
√

ε

c0
� i

ωp

c0
= i

c0

√
ne2

ε0m
. (4)

This tells us the decay of the fields in the superconductor and hence the London penetration
depth:

λ = 1

−2ik
=

√
m

4µ0ne2
. (5)

It is sometimes erroneously stated that a superconductor is a ‘perfect diamagnet’ with µ = 0,
whereas it is in fact a perfect plasma. Hence electrical plasmas can be seen to be interesting
and unusual objects at all frequencies from DC to the UV.

By analogy we expect a magnetic plasma to be equally interesting, but with the role of
electric and magnetic properties exchanged. For example whereas a superconductor expels
all electromagnetic fields and requires that at its surface all magnetic fields are parallel and all
electric fields are perpendicular, a magnetic plasma with µ � 0 on the contrary will require
magnetic fields to be perpendicular to its surface.

Producing a material with both ε and µ negative results in a negative refractive index.
This requires a detailed consideration of matching conditions at the interface with vacuum,
but it does prove to be a correct description of such systems. Veselago commented some time
ago on the remarkable focusing property of a slab of such a material and Smith et al have
shown that negative refractive index materials can be fabricated [1, 2]. More recently it has
been shown that under the ideal conditions:

ε = −1, µ = −1, (6)

a slab of material is in fact a perfect lens, not only bringing all propagating beams to a focus, but
also restoring the amplitude and phase of the evanescent waves at the same point [3]. Normally
the later are irretrievably lost to the image and hence the sharpness limited.

In fact, if we are concerned entirely with length scales that are much less that the wavelength
of radiation, the electric and magnetic fields behave as separate entities. If we wish to focus
only on the electrical component of an image, we only need to have that the value of the
permittivity tensor perpendicular to the surface, ε⊥ = −1, and the value of µ is irrelevant.
Likewise the magnetic component only requires µ⊥ = −1.

We can produce a material with a negative ε at almost any frequency from DC to the UV.
Negative µ has been demonstrated in the gigahertz region and the technology is good well into
megahertz frequencies. At lower frequencies the material suggested in this paper fills the gap.
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2. A magnetic plasma

Although Maxwell’s equations are symmetric with respect to magnetic and electric fields,
Nature is less obliging. Only free electrical charges are available and magnetic monopoles
have yet to be observed. Therefore constructing a magnetic plasma by direct analogy is not
possible. In an earlier paper a trick was suggested for giving the appearance of a magnetic
plasma: thin sheets of insulated conductor are wound around the surface of a cylinder so that
when the cylinder is placed in a magnetic field currents flow in the conductor which magnetize
the cylinder [4]. To an observer outside the cylinder this has the appearance of magnetic poles
being propelled to opposite ends of the cylinder. An array of such cylinders was predicted to
behave like a magnetic plasma, with a magnetic plasma frequency in the gigahertz range of
frequencies. Such an approach to creating a magnetic plasma essentially relies on a resonant
overscreening response to the magnetic field and can in principle be extended to submicron
structures and infrared frequencies [5]. An alternative approach is to use insulating particles
and to excite a resonant Mie mode of the required symmetry giving a bulk magnetization of
the sample. Because of the sub-wavelength requirement for the inclusions, this method is
practical at frequencies only where large dielectric constants are available [6].

We report here a completely different recipe for realizing a magnetic plasma at very low
frequencies of a few hertz. We observe that current elements, just like charges, obey a long-
range Coulomb interaction and are themselves capable of creating fields. However, unlike
electrical charges, current elements respond to magnetic fields, and in the case of currents it is
unlike currents that repel. Could we not have the elements of a magnetic plasma in a system
of current-carrying wires?

The proposed structure consists of an array of long conducting wires parallel to the z-
axis, pairs of which carry oppositely directed currents, ±I , which we assume are driven by
an infinite impedance source. When a magnetic field, Be−iωt , is applied parallel to the y-axis
(i.e. perpendicular to the wires), each wire carrying a positive current is subject to a force acting
parallel to the x-axis of −I Be−iωt per unit length. The field experienced by each wire is made
up of the externally applied field plus any further field due to its neighbours. The magnetic
response of the structure has its origin in the resulting displacement of each wire from its
equilibrium position which produces a net surface current density on the opposing yz-faces of
the structure, which in turn induce a magnetic field, inside of the structure and also directed
perpendicular to the wires. The magnitude and direction of this induced field determines
the permeability of the structure in the effective medium limit. The long-range nature of the
Coulomb force provides for the uniform restoring force between charged particles necessary for
plasma oscillations in ionic plasmas. In the magnetic analogue there are two simple regimes.
If the displacement of the wires is large relative to their spacing we can ignore local field
corrections as averaging to zero and the wires experience the average induced field produced
by surplus currents on the boundaries. The long-ranged force between current elements then
acts to soften the vibrations of the wires under the tension exerted. By contrast in the low-field
case, when the displacements are small compared to the interwire spacing, the wire remains
trapped in the local field minimum which stabilizes the static structure.

We first treat the case where the applied field is large but assume that ux , the displacement
of the wires, remains small in comparison to their length. The equation of motion is written as

müx = −αux − 2mγ u̇x − I B exp(−iωt), (7)

where m is the mass per unit length of the wires and B is the amplitude of the average total
field experienced by the wires. Here −αux is a restoring force due to the tension in the wires.
The rate of damping is determined by the factor γ which results in a decay of free vibrations
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of the wires as exp(−γ t). The main sources of this loss for the systems we have in mind will
be losses to the air or any fluid surrounding the structure and dissipation of energy at the points
where the wires are supported.

Solving for ux gives

ux = I

mω2 − α + 2imγω
B exp(−iωt) = Im−1

ω2 − ω2
0 + 2iγω

B exp(−iωt), (8)

where the wire resonance frequency, ω0 = √
α/m, was introduced.

Now we wish to calculate how this displacement of the wires magnetizes the structure.
First we assume that the wires with positive current are arranged in a square array with lattice
constant a. The wires with negative current are similarly arranged and their lattice centres the
positive lattice though in fact in the large-field case the details of the wire arrangements are
unimportant. The current density is ±Ia−2 per unit area. Hence we calculate that the upper
yz-face of the structure acquires a surplus current density of 2Ia−2ux , where the factor of two
arises because each current lattice contributes equally to the surplus. There is a similar current
deficit on the lower surface. Together the two sets of currents form a large solenoid inside
which there is an induced magnetic field parallel to the y-axis which we calculate to be

Bind exp(−iωt) = −2µ0 Ia−2ux = −2µ0 I 2m−1a−2

ω2 − ω2
0 + 2iγω

B exp(−iωt). (9)

It remains to identify

B = Bapp + Bind (10)

such that

B = Bapp

[
1 +

2µ0 I 2m−1a−2

ω2 − ω2
0 + 2iγω

]−1

. (11)

To derive the effective permeability of this system we recognize that the componentof the fields
parallel to the yz-surface must be continuous. In the vacuum, this field is Happ = µ−1

0 Bapp

and, in the medium, H = (µµ0)
−1 B . Hence,

µ−1
0 Bapp = Happ = (µµ0)

−1 B. (12)

Comparing with (11) gives

µ =
[

1 +
2µ0 I 2m−1a−2

ω2 − ω2
0 + 2iγω

]−1

. (13)

Provided that the damping is small, negative values of µ are obtained in the range√
ω2

0 − 2µ0 I 2

ma2
< ω < ω0. (14)

In order that we can neglect the effects of collisions between the moving wires, we take the
wire radius r � a. In figure 2 we have plotted the effective permeability for the following
values of the parameters:

a = 10−3 m

m � 2.8 × 10−4 kg m−3

I � 1.6 A.

These values correspond to copper wires (mass density: 8890 kg m−3) of radius 10−4 m and
carrying a current density j = 5 × 107 A m−2. We took ω0, which depends on the tension
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exerted, to be 2π50 Hz and the damping rate γ = 0.5. In figure 2(d) the corresponding
displacement of the wires in units of the spacing is shown for an applied field of 5 × 10−4 T.

Quite a different scenario pertains if the fields are sufficiently small that the displacement
of the wires is small relative to their spacing. Since this avoids the possibility of collisions
between the wires, this is in some ways the more interesting regime. We are also now free to
allow for a larger wire radius relative to their spacing.

To derive the response we rewrite (7) as

müx = −βux − 2mγ u̇x − I Bapp exp(−iωt). (15)

We explain this new equation as follows: in the absence of Bapp, a small displacement of the
wires relative to one another finds the wires in a local potential minimum due partly to the
restoring force −αux created by the tension in the wires and seen in equation (7), but also
assisted by the fact that the currents are arranged in a stable local minimum created by the
repulsion of opposite currents. This combined restoring force is written as −βux . Long-range
forces do not set in until ux > a. Now we calculate

ux = Im−1

ω2 − ω′
0

2 + 2iγω
Bapp exp(−iωt) (16)

where

ω′
0

2 = β/m. (17)

Although the wires see only their local minimum, the sample as a whole experiences a net
induced magnetization:

Bind exp(−iωt) = −2µ0 Ia−2ux = −2µ0 I 2m−1a−2

ω2 − ω′
0

2 + 2iγω
Bapp exp(−iωt). (18)

Hence we calculate

B = µs Bapp = Bapp + Bind =
[

1 − 2µ0 I 2m−1a−2

ω2 − ω′
0

2 + 2iγω

]
Bapp (19)

and identify

µs = 1 − 2µ0 I 2m−1a−2

ω2 − ω′
0

2 + 2iγω
. (20)

In contrast to the large-field case, µs diverges at the resonance frequency and is zero at

ω =
√

ω′
0

2 +
2µ0 I 2

ma2
. (21)

For comparison with our results for the large-field case we assume copper wires with
ω0 = ω′

0 as before and the same values of a and γ . The remaining parameters that we assume
are the current density, j = 107 A m−2, and wire radius, r = 2.5 × 10−4 m, in which case

m � 1.8 × 10−3 kg m−3 I � 2.0 A.

The effective permeability is plotted in figure 3 and the displacement is plotted in figure 3(d)
for an applied field of 10−4 T: roughly twice that of the Earth.

The assumption of small displacements of the wires allows us to consider more complex
structures. A single set of wires parallel to the z-axis only produces magnetic activity in the
xy-plane, but introducing a second set of wires parallel to the y-axis gives magnetic activity
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Figure 1. An array of current-carrying wires designed to simulate a magnetic plasma. The wires
move in response to external magnetic fields and thus produce a magnetic polarization of the
sample. For the purposes of the calculation the wires are assumed long compared to the depth in
the x-direction, and the sample is also assumed to be long in the y-direction.

along all three axes. Obviously the second set of wires has no effect as the field lies parallel
to the second set of wires, so we can immediately write for the new wire grid structure

µ2y = µ2z = µs = 1 − 2µ0 I 2m−1a−2

ω2 − ω′
0

2 + 2iγω
. (22)

On the other hand, a field parallel to the x-axis moves both sets of wires producing twice the
polarization:

µ2x = 1 − 4µ0 I 2m−1a−2

ω2 − ω′
0

2 + 2iγω
. (23)

Figures 2 and 3 indicate that large values of the effective permeability are attainable using
this prescription and for a wide range of strengths of the applied magnetic field. In deriving our
results for the effective permeability we have neglected the finite length of the wires which must
be long in comparison to their displacement in order that the derived permeability represents
a good approximation in each case. We have also assumed that the applied magnetic field is
uniform over the length of the wire. The fundamental resonance frequency of a narrow wire
under tension of length l is given by

ω0 = πc/ l (24)

where c = √
T/m is the speed of transverse waves on the wire and T is the tension. In order

for example to screen a uniform applied field of frequency ω, the tension should be adjusted
such that this fundamental mode frequency lies near ω. Of course in practice any source of
magnetic field will contain many spatial Fourier components. If we consider the geometry of
figure 1, then for a component of the applied field which varies as exp(ikzz), the screening will
only be effective provided that k−1

z � l. For fields which are rapidly varying in space a series
of short lengths of wire with a correspondingly reduced tension may therefore be appropriate.

In conclusion, we have presented a scheme for realizing a negative permeability at very
low frequencies of a few hertz. The proposed structure consists of an array of current-carrying
wires. Because the wires occupy a small fraction of the structures’ volume these structures
will be lightweight and the resonant frequency will be tunable through the tension exerted in
the wires. Excitation of surface modes of the structure will be possible where µ = −1 as
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Figure 2. (a)–(c) The effective permeability as a function of frequency of the array of current-
carrying wires for the case where the displacement is large compared to their spacing. The
parameters are given in the text. (d) The displacement of the wires in units of their spacing
for an applied field of 5 × 10−4 T. The solid curves are the real parts and the dashed curves the
imaginary parts in each case.
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Figure 3. (a)–(c) The effective permeability as a function of frequency of the array of current-
carrying wires for the case where the displacement is small compared to their spacing. The
parameters are given in the text. (d) The displacement of the wires in units of the wire spacing for
an applied field of 10−4 T. The solid curves are the real parts and the dashed curves the imaginary
parts in each case.
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well as a bulk magnetic plasmon mode where µ = 0. The large positive permeability below
the resonance frequency could find an application for the structure as a magnetic conductor
in eliminating the mains signal from a sensitive piece of equipment. This could be achieved
by forming a mesh of wires into a box and adjusting the tension as suggested in order that the
fundamental resonance frequency of the wires was near 50 Hz. The magnetic fields would
then be channelled though the sides of the box where the permeability is large thus shielding
the interior.

References

[1] Veselago V G 1968 Sov. Phys.–Usp. 10 509
[2] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
[3] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[4] Pendry J B, Holden A J, Robins D J and Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075
[5] O’Brien S and Pendry J B 2002 J. Phys.: Condens. Matter 14 6383
[6] O’Brien S and Pendry J B 2002 J. Phys.: Condens. Matter 14 4035


